Гидравлический расчет газопровода: методы и способы вычисления + пример расчета

Table of Contents

Самостоятельный гидравлический расчет трубопровода

Гидравлический расчет газопровода: методы и способы вычисления + пример расчета

Содержание: [Скрыть]

Постановка задачи

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя.

Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.

Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.

Условный диаметр (проход) трубопровода (DN) – это условная  безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода.

Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.

Обратите внимание

Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний,  по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:

Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re

Методика гидравлического расчета газопровода

Гидравлический расчет газопровода: методы и способы вычисления + пример расчета

Для транспортировки всех видов газа от поставщика к потребителю используются трубопроводы и другие специальные сооружения и комплексы, которые бывают разных размеров и конструкций.

Чтобы газовая магистраль на всех участках была надёжной и более эффективной в эксплуатации, обязательно проводится гидравлический расчёт газопровода с подбором оптимального для данных эксплуатационных условий режима его работы.

На протяжении всех участков газопроводной магистрали проводятся расчёты для выявления мест, где в трубах вероятны появления возможных сопротивлений, изменяющих скорость подачи топлива.

Если все вычисления сделать правильно, то можно подобрать наиболее подходящее оборудование и создать экономичный и эффективный проект всей конструкции газовой системы.

Это избавит от лишних, завышенных показателей при эксплуатации и расходов в строительстве, которые могли бы быть при планировании и установке системы без гидравлического расчёта газопровода.

Появляется лучшая возможность подбора нужного размера в сечении и материалов труб для более эффективной, быстрой и стабильной подачи голубого топлива в запланированные точки системы газопровода.

Обеспечивается оптимальный рабочий режим всей газовой магистрали.

Застройщики получают финансовую выгоду при экономии на закупках технического оборудования, строительных материалов.

Производится правильный расчёт газопроводной магистрали с учётом максимальных уровней расхода горючего в периоды массового потребления. Учитываются все промышленные, коммунальные, индивидуально-бытовые нужды.

Классификация газопроводов

Современные газопроводы – это целая система комплексов сооружений, предназначенных для транспортировки горючего топлива от мест его добычи до потребителей. Поэтому по предназначению они бывают:

  • Магистральными – для транспортировки на большие расстояния от мест добычи до пунктов назначения.
  • Местными – для сбора, распределения и подачи газа к объектам населённых пунктов и предприятий.

По магистральным трассам сооружаются компрессорные станции, которые нужны для поддержания в трубах рабочего давления и поставки газа до назначенных пунктов к потребителям в необходимых объёмах, рассчитанных заранее. В них газ очищается, осушается, сжимается и охлаждается, а затем возвращается в газопровод под определённым давлением, необходимым для данного участка прохождения топлива.

Местные газопроводы, расположенные в населённых пунктах, классифицируются:

  • По виду газа – транспортироваться может природный, сжиженный углеводородный, смешанный и др.
  • По давлению – на разных участках газ бывает с низким, средним и высоким давлением.
  • По расположению – наружные (уличные) и внутренние, надземные и подземные.

Принцип работы газовой магистрали

В составе городских систем находятся:

  • источник газоснабжения;
  • газораспределительные станции;
  • газопроводы разных уровней давления;
  • газгольдерные станции;
  • ГРУ и ГРП;
  • средства телемеханизации.

В процессе гидравлического расчёта все эти объекты учитываются, так как каждый из них оказывает своё воздействие на скорость и объём транспортируемого топлива. Вычисления проводятся по отдельным участкам, а затем суммируются.

Схема газовой магистрали

  1. Сеть газопроводов, расположенных в пределах города, оснащена специальными системами для распределения газа (станциями), которые располагаются в конце всех этих трубопроводов.
  2. При поступлении газа на такую станцию, его давление регулируется и перераспределяется, а напор подачи снижается до допустимых значений.
  3. Затем газ перемещается в регуляторный пункт, оттуда отправляется далее в сеть, где давление снова увеличивается.
  4. Трубопроводы с самым высоким уровнем давления подключаются к системам, расположенным в подземных хранилищах.
  5. Для управления уровнем расхода газа в каждый суточный период, строятся специальные газгольдерные станции.
  6. Газ с высоким и средним показателем уровня давления транспортируется в трубах, которые служат своего рода подпиткой для магистралей с низким напором газа. Для управления процессами перепадов давления устанавливаются специальные точки регулировки.
  7. Чтобы точно учитывать уровни потери давления при транспортировке газа и поступление всего планируемого объёма в назначенный пункт, методом гидравлического расчёта определяют оптимальный диаметр труб, для установки подходящего размера.

Гидравлический расчёт газопровода с низким давлением

Вначале ориентировочно учитывается, сколько населения проживает в данном районе, количество промышленных, общественных объектов, а затем определяется приблизительный объём газа, который потребуется расходовать на бытовые и производственные нужды.

Магистральный газопровод с низким давлением

Затем вычисляется средний расход топлива в течение определённого времени (обычно 1 часа).

Важно

Требуется учесть точки газораспределения – подсчитывается их количество, а также местонахождение, чтобы знать, какой длины надо будет строить магистраль, какой диаметр труб и строительные материалы выбрать.

Из-за разницы в показателях производится расчёт не только общих перепадов давления всей магистрали, но и в распределительных точках, газопроводах внутри зданий и всех абонентских ветвях.

Если размеры труб разные, то измеряется площадь каждого одинакового участка, рассчитывается расход газа на все из этих показателей в отдельности, а затем суммируется.

Вычислительные работы выполняются с учётом нескольких факторов: расчётных данных отрезка газопровода, фактических показателей со всего участка и эквивалентных показаний.

В итоге подсчитывается узловая и удельная путевая затрата. Узловая сосредоточена в определённой точке магистрали, а удельная путевая распределена между узловыми точками.

Гидравлический расчёт газопровода со средним давлением

Учитываются показания напора топлива в начале его подачи. Этот участок находится в пределах от главной газораспределительной точки до места, где происходит переход высокого давления к среднему. Уровень давления на этом участке должен быть таким, чтобы даже в периоды самых больших нагрузок на магистраль показатели были всегда выше минимальных допустимых отметок.

Способ стабилизации давления газа на компрессорной станции магистрального газопровода

  1. Применяются вычисления по принципу перемены давления с учётом определённой длины трубопровода.
  2. Вначале рассчитываются потери давления, возникающие на основном участке магистрали, а затем – расход топлива.
  3. По этим средним показателям подбирается необходимая толщина и диаметры труб.
  4. Выбираются все их возможные размеры, а потом по номограмме определяется уровень потерь для каждого варианта.
  5. При правильных показаниях гидравлического расчёта потери давления на таких участках всегда соответствуют постоянному уровню.

Гидравлический расчёт газопровода с высоким давлением

Вычисления проводятся с учётом самого высокого натиска газа, а также всех особенностей спецификации данного газопровода.

Поэтому подбираются строительные материалы и виды труб с такими техническими характеристиками, которые обеспечат нормальное функционирование системы газопровода по всей магистрали.

Обязательно учитываются и все окружающие условия, где будет проложен газопровод. Досконально изучается местность и составляется точный её план. Далее:

Гидравлический расчёт газопроводов и среднего давления

  • Составляется схема проекта с чётко обозначенными ответвлениями к местам потребления.
  • Выбирается минимальная длина пути и обязательно расположение по кольцу.
  • Расчёты производятся на основании измерений всех участков с учётом масштаба.
  • Результаты показаний увеличиваются – в итоге расчётная длина каждого участка будет больше на 10%.
  • Показания гидравлического расчёта, выполненного с каждого отдельного участка, суммируются для определения общего расхода топлива.
  • Затем определяется внутренний оптимальный размер трубы.

Что ещё учитывается при расчёте газопроводной магистрали

В результате трения о стенки скорость газа по сечению трубы различается – по центру она быстрее. Однако применяется для расчётов средний показатель – одна условная скорость.

Различают два вида перемещения по трубам: ламинарное (струйное, характерное для труб с малым диаметром) и турбулентное (имеет неупорядоченный характер движения с непроизвольным образованием вихрей в любом месте широкой трубы).

Расчет диаметра трубопровода магистрального газоснабжения

Газ перемещается не только из-за оказываемого на него внешнего давления. Его слои оказывают давление между собой. Поэтому учитывается и фактор гидростатического напора.

На скорость перемещения влияют и материалы труб. Так в стальных трубах в процессе эксплуатации увеличивается шероховатость внутренних стенок и оси сужаются по причине зарастания. Полиэтиленовые трубы, наоборот, увеличиваются во внутреннем диаметре с уменьшением толщины стенок. Всё это учитывается при расчётном давлении.

Основные уравнения гидравлического расчёта газопровода

Для расчёта движения газа по трубам берутся значения диаметра трубы, расходы топлива и потеря напора. Вычисляется в зависимости от характера движения. При ламинарном – расчёты производятся строго математически по формуле:

Р1 – Р2 = ∆Р = (32*μ*ω*L)/D2 кг/м2 (20), где:

  • ∆Р – кгм2, потери напора в результате трения;
  • ω – м/сек, скорость движения топлива;
  • D – м, диаметр трубопровода;
  • L – м, длина трубопровода;
  • μ — кг сек/м2, вязкость жидкости.

При турбулентном движении невозможно применить точные математические расчёты по причине хаотичности движения. Поэтому применяются экспериментально определяемые коэффициенты.

Рассчитываются по формуле:

Р1 – Р2 = (λ*ω2*L*ρ)/2g*D (21), где:

  • Р1и Р2 – давления в начале и конце трубопровода, кг/м2;
  • λ – безразмерный коэффициент сопротивления;
  • ω – м/сек, средняя по сечению трубы скорость движения газа;
  • ρ – кг/м3, плотность топлива;
  • D – м, диаметр трубы;
  • g – м/сек2, ускорение силы тяжести.

Видео: Основы гидравлического расчета газопроводов

Гидравлический расчёт газопроводов

Гидравлический расчет газопровода: методы и способы вычисления + пример расчета

Основная задача гидравлических расчетов заключается в том, чтобы определить диаметры газопроводов. С точки зрения методов гидравли­ческие расчеты газопроводов можно разделить на следующие типы:

· расчет кольцевых сетей высокого и среднего давления;

· расчет тупиковых сетей высокого и среднего давления;

· расчет многокольцевых сетей низкого давления;

· расчет тупиковых сетей низкого давления.

Для проведения гидравлических расчётов необходимо иметь следующие исходные данные:

· расчетную схему газопровода с указанием на ней номеров и длин участков;

· часовые расходы газа у всех потребителей, подключенных к данной сети;

·допустимые перепады давления газа в сети.

Расчетная схема газопровода составляется в упрощенном виде по плану газифицируемого района. Все участки газопроводов как бы вып­рямляются и указываются их полные длины со всеми изгибами и поворотами. Точки расположения потребителей газа на плаке определяются местами расположения соответствующих ГРП или ГРУ.

12.1 Гидравлический расчет кольцевых сетей высокого и среднего давления.

Гидравлический режим работы газопроводов высокого и среднего давления назначается из условий максимального газопотребления.

Расчёт подобных сетей состоит из трёх этапов:

· расчет в аварийных режимах;

· расчет при нормальном потокораспределении ;

· расчёт ответвлений от кольцевого газопровода.

Расчетная схема газопровода представлена на рис. 2 . Длины от­дельных участков указаны в метрах. Номера расчетных участков указа­ны числами в кружках. Расход газа отдельными потребителями обозначен буквой V и имеет размерность м3/ч. Места изменения расхода газа на кольце обозначены цифрами 0, 1, 2, ….. , и т. д.. Источник питания газом (ГРС) подключен к точке 0.

Газопровод высокого давления имеет в начальной точке 0 избыточ­ное давление газаР Н =0,6 МПа. Конечное давление газа Р К = 0,15 МПа. Это давление должно поддерживаться у всех потребителей, подключен­ных к данному кольцу, одинаковым независимо от места их расположе­ния.

Совет

В расчетах используется абсолютное давление газа, поэтому расчет­ные Р Н =0,7 МПа и РК=0,25МПа. Длины участков переведены в километры.

Для начало расчёта определяем среднюю удельную разность квадратов давлений:

А СР = (Р2н – Р2к) / 1,1å l i

где å l i – сумма длин всех участков по расчётному направлению, км.

Множитель 1,1 означает искусственное увеличение длинны газопровода для компенсации различных местных сопротивлений (повороты, задвижки, компенсаторы и т. п.).

Далее, используя среднее значение А СР и расчетный расход газа на соответствующем участке, по номограмме рис. 11.

2 [10] определяем диаметр газопровода и по нему, используя ту же номограмму, уточняем значе­ние А для выбранного стандартного диаметра газопровода.

Затем по уточненному значению А и расчетной длине, определяем точное значе­ние разности Р2н – Р2к на участке. Все расчеты сводят в таблицы.

12.1.1 Расчет в аварийных режимах.

Аварийные режимы работы газопровода наступают тогда, когда откажут в работе участки газопровода, примыкающие к точке питания 0. В нашем случае это участки 1 и 18. Питание потребителей в аварийных режимах должно осуществляться по тупиковой сети с условием обязательного поддержания давления газа у последнего потребителя Р К = 0,25 МПа.

Результаты расчетов сводим в табл. 2 и 3.

Расход газа на участках определяется по формуле:

VР = 0,59S (К ОБ iV i)(м3 / ч),

где К ОБ i – коэффициент обеспеченности различных потребителей газа;

V i – часовой расход газа у соответствующего потребителя, м3 / ч.

Для простоты коэффициент обеспеченности принят равным 0,8 у всех потребителей газа.

Расчетную длину участков газопровода определяют по уравнению:

l Р = 1,1l Г (км),

Средняя удельная разность квадратов давлений в первом аварийном режиме составит:

А СР = (0,72 – 0,252) / 1,1• 6,06 = 0,064(МПа2 / км),

å l i = 6,06(км),

Табл. 2.

Отказал участок 1
№ уч.d У ммl Р кмV Р м3 / чР2н-Р2к l РР2н-Р2к , МПа2
0,07710053,8310,0450,003465
1,8489849,45010,040,07392
0,4079809,21920,040,01628
0,7269796,5790,040,02904
0,0779787,36320,190,01463
0,4739785,69090,190,08987
0,2539745,460,180,04554
0,0442566,84030,10,0044
0,1212554,20020,10,0121
0,221665,17870,0530,01166
0,1211663,50640,0530,006413
0,1761459,12570,0450,00792
0,1541449,90990,0450,00693
0,9131437,26970,0450,041085
0,451903,33390,0450,020295
0,154901,66160,20,0308
0,36312,640160,0310,011253
ålР=6,578å(Р2н-Р2к)=0,425601

P К = Ö(0,7 2 – 0,425601) – 0,1 = 0,1537696 Ошибка: 1,5 %

Методика, характеристики и параметры гидравлического расчета газопровода

Гидравлический расчет газопровода: методы и способы вычисления + пример расчета

Газопровод является конструкционной системой, основное назначение которой – транспортировка газа. Трубопровод помогает осуществить перемещения голубого топлива к конечному пункту, той есть к потребителю.

Для того чтобы это было проще сделать газ поступает в трубопровод под определенным давлением.

Для надежной и правильной работы всей конструкции газовой магистрали и его прилегающих ветках, необходим гидравлический расчет газопровода.

Для чего необходим расчет газопровода

  1. Расчет газопроводной магистрали необходим, чтобы выявить возможное сопротивление в газовой трубе.
  2. Правильные вычисления дают возможность качественно и надежно подобрать необходимое оборудование для газовой конструкционной системы.

  3. После произведенного расчета, можно наилучшим образом подобрать верный диаметр труб. В результате газопровод сможет осуществлять стабильное и эффективное поступление голубого топлива.

    Газ будет подаваться при расчетном давлении, он будет быстро и качественно доставляться во все нужные точки газопроводной системы.

  4. Газовые магистрали будут работать в оптимальном режиме.
  5. При правильном расчете в конструкции не должно быть излишних и чрезмерных показателей при установке системы.

  6. Если расчет выполнен правильно, застройщик может финансово сэкономить. Все работы будет выполнены согласно схеме, будут закуплены только необходимые материалы и оборудование.

Как работает система газовой магистрали

  1. В городской черте размещается сеть газовых трубопроводов. В конце каждого трубопровода, по которому должен поступать газ, установлены специальные газораспределительные системы, еще их называют газораспределительными станциями.

  2. Когда газ доставлен в такую станцию, происходит перераспределение давления, а точнее напор газа снижается.
  3. Затем газ следует в регуляторный пункт, а от него в сеть с более высоким давлением.
  4. Трубопровод с наивысшим давлением присоединяют к хранилищу под землей.

  5. Для регулирования суточного потребления топлива монтируют специальные станции. Их называют газгольдерными станциями.
  6. Газовые трубы, в которых протекает газ с высоким и среднем давлением, служат, как своеобразная подпитка газопроводов с низким напором газа. Для того чтобы это контролировать существуют точки регулировки.

  7. Чтобы определиться с потерями давления, а также точным поступлением всего необходимого объема голубого топлива в конечный пункт, вычисляют оптимальный диаметр труб. Вычисления производятся путем гидравлического расчета.

Существует местное сопротивление, возникающее на поворотах, в точках перемены скорости газа, при изменении диаметра той или иной трубы. Еще чаще всего бывает сопротивление при трении, оно происходит не зависимо от поворотов и скорости газа, его место распределения — вся протяженность газовой магистрали.

Газовая магистраль имеет возможность проводить газ, как в промышленные предприятия и организации, так и в коммунальные потребительские сферы.

С помощью расчетов определяются точки, куда необходимо поступление топлива с низким давлением. К таким точкам чаще всего относятся – жилые здания, коммерческие помещения и здания общего посещения, небольшие коммунальные потребители, некоторые маленькие котельные.

Гидравлический расчет с низким давлением газа по трубопроводу

  1. Ориентировочно необходимо знать количество жителей (потребителей) в расчетном районе, куда будет подаваться газ с низким давлением.
  2. Учитывается весь объем газа за год, который будет использоваться на всевозможные потребности.

  3. Определяется путем вычислений значение расхода топлива потребителями за определенное время, в данном случае берется показание в один час.
  4. Устанавливается местонахождение точек газораспределения, подсчитывается их количество.

Производят расчет перепадов давления участка газопроводной магистрали.

В данном случае, к таким участкам относятся распределительные точки. А также внутридомовой трубопровод, ветви абонентов. Затем учитываются общие перепады давления всей магистрали газопровода.

  1. Вычисляется площадь всех в отдельности труб.
  2. Устанавливается густота населения потребителей в данном районе.
  3. Выполняется расчет расхода газа на показание площади каждой отельной трубы.
  4. Осуществляется вычислительные работы по следующим показателям:
  • расчетные данные длины отрезка газового трубопровода;
  • фактические данные длины всего участка;
  • эквивалентные данные.

Для каждого участка газопровода необходимо посчитать удельную путевую и узловую затрату.

Гидравлический расчет со средним давлением топлива в газопроводе

При расчете газопровода со средним давлением первоначально берут во внимание показание начального напора газа.

Такое давление можно определить, если пронаблюдать подачу топлива начиная с главной газораспределительной точки до области преобразования и перехода от высокого давления к среднему распределению.

Давление в конструкции должно быть таковым, чтобы показатели не опускались ниже минимально допустимых значений при пиковой нагрузке на магистраль газопровода.

В вычислениях применяется принцип перемены давления, учитывая единицу длины измеренного трубопровода.

Обратите внимание

Для выполнения наиболее верного расчета, вычисления производятся в несколько стадий:

  1. На начальной стадии, становится возможным рассчитать потери давления. Берутся во внимания потери, которые возникают на главном участке газопровода.
  2. Затем выполняется расчет расхода газа на данном отрезке трубы. По полученным средним показателям потерь давления и по вычислениям расхода топлива, устанавливается, какая необходима толщина трубопровода, выясняется необходимые размеры труб.
  3. Учитываются все возможные размеры труб. Затем по номограмме вычисляется величина потерь для каждой из них.

Если гидравлический расчет трубопровода со средним напором газа верный, то потери давления на отрезках трубы будут иметь постоянное значение.

Гидравлический расчет с высоким давлением топлива по газопроводу

Выполнять вычислительную программу гидравлического расчета необходимо на основе высокого натиска сосредоточенного газа. Подбирается несколько версий газовой трубы, они должны подходить под все требования полученного проекта:

  1. Определяется минимальный диаметр трубы, который можно принять в рамках проекта для нормального функционирования всей системы.
  2. Принимается во внимания, в каких условиях будет происходить эксплуатация газопровода.
  3. Уточняется особая спецификация.

Далее производится гидравлический расчет по следующим стадиям:

  1. Изучается местность в том районе, где будет проходить газовый трубопровод. Досконально рассматривается план местности, чтобы избежать каких-либо ошибок в проекте при дальнейших работах.
  2. Изображается схема проекта. Ее главное условие, чтобы она проходила по кольцу. На схеме обязательно должны быть четко видны различные ответвления к станциям потребления. Составляя схему, делают минимальную длину пути труб. Это необходимо для того, чтобы весь газопровод максимально эффективно работал.
  3. На изображенной схеме производят измерения участков газовой магистрали. Затем выполняется расчетная программа, при этом, конечно же, учитывается масштаб.
  4. Полученные показания меняют, расчетную длину каждого изображенного на схеме участка трубы немного увеличивают, примерно на десять процентов.
  5. Производятся вычислительные работы для того чтобы определить, каким будет общий расход топлива. При этом учитывается расход газа на каждом участке магистрали, затем он суммируется.
  6. Заключительной стадией расчета трубопровода с высоким напором газа будет определение внутреннего размера трубы.

Для чего необходим гидравлический расчет внутридомового газопровода

В период расчетных работ определяются виды необходимых газовых элементов. Приборы, которые задействованы в регулировании и доставке газа.

Изображают схему всей внутридомовой системы. Это дает возможность во время вывить какие-либо неполадки, четко произвести монтаж.

В условиях подачи топлива, принимается в расчет количество жилых помещений, ванная и кухонная комната. В кухне принимается к сведению наличие таких составляющих, как вытяжка, дымовая труба. Все это нужно для того, чтобы качественно установить приборы и трубопровод для доставки голубого топлива.

Гидравлический расчет внутридомовой газовой системы

В данном случае, как и при расчете газопровода с высоким давлением, берется во внимание сосредоточенный объем газа.

Диаметр участка внутридомовой магистрали рассчитывается согласно потребляемой величине голубого топлива.

Также учитываются потери давление, которые могут произойти на пути доставки газа. В расчетной системе должны быть наименьшие возможные потери давления. Во внутридомовых газовых системах уменьшение давления довольно частое явление, поэтому вычислить этот показатель очень важно для эффективной работы всей магистрали.

Схема внутридомовой газовой сети

В высотных зданиях кроме изменений и перепадов давления, производятся вычисления гидростатического напора. Явление гидростатического напора происходит из-за того, что воздух и газ имеют разную плотность, в результате образуется данный вид напора в газовой трубопроводной системе с низким натиском.

Производятся вычисления величины газовых труб. Оптимальный диаметр труб может обеспечить наименьшие потери давления от станции перераспределения до точки доставки газа потребителю. При этом в программе расчета должно учитываться, что перепад давления не должен быть выше четырехсот паскалей. Такой перепад давления также закладывается в область распределения и точки преобразования.

При расчете расхода газа принимается к сведению то, что потребление голубого топлива происходит неравномерно.

Завершающим этапом расчета является сумма всех перепадов давления, она учитывает общий коэффициент потерь на магистрали и ее ветках. Суммарные показатель не будет превышать предельно допустимых значений, он будет составлять менее семидесяти процентов от номинального давления, которое показывают приборы.

Методы гидравлического расчета системы отопления

Гидравлический расчет газопровода: методы и способы вычисления + пример расчета

Доброго всем времени суток! Сегодня я опишу как нужно делать гидравлический расчет системы отопления и что это вообще такое. Начнем с последнего вопроса.

Что такое гидравлический расчет и зачем он нужен?

Гидравлический расчет (далее ГР) — это математический алгоритм, в результате выполнения которого мы получим необходимый диаметр труб в данной системе (имеется ввиду внутренний диаметр).

Кроме того, будет понятно какой нам необходимо использовать циркуляционный насос — определяется напор и расход насоса. Все это даст возможность сделать систему отопления экономически оптимальной.

Производится он на основании законов гидравлики — специального раздела физики, посвященного движению и равновесию в жидкостях.

Теория гидравлического расчета системы отопления

Теоретически ГР отопления основан на следующем уравнении:

ΔP = R•l + z

Данное равенство справедливо для конкретного участка. Расшифровывается это уравнение следующим образом:

  • ΔP — линейные потери давления.
  • R — удельные потери давления в трубе.
  • l — длина труб.
  • z — потери давления в отводах, запорной арматуре.

Из формулы видно, что потери давления тем больше, чем она длиннее и чем больше в ней отводов или других элементов, уменьшающих проход или меняющих направление потока жидкости. Давайте выведем чему равны R и z. Для этого рассмотрим еще одно уравнение, показывающее потери давления от трения об стенки труб:

ΔPтрение = (λ/d)*(v²ρ/2)

Это уравнение Дарси — Вейсбаха. Давайте расшифруем его:

  • λ — коэффициент, зависящий от характера движения трубы.
  • d — внутренний диаметр трубы.
  • v — скорость движения жидкости.
  • ρ — плотность жидкости.

Из этого уравнения устанавливается важная зависимость — потери давления на трение тем меньше, чем больше внутренний диаметр труб и меньше скорость движения жидкости. Причем, зависимость от скорости здесь квадратичная. Потери в отводах, тройниках и запорной арматуре определяются по другой формуле:

ΔPарматура = ξ*(v²ρ/2)

Здесь:

  • ξ — коэффициент местного сопротивления (далее КМС).
  • v — скорость движения жидкости.
  • ρ — плотность жидкости.

Из данного уравнения также видно, что падение давления возрастает с увеличением скорости жидкости. Также, стоит сказать, что в случае применения низкозамерзающего теплоносителя также будет играть важную роль его плотность — чем она выше тем тяжелее циркуляционному насосу. Поэтому при переходе на «незамерзайку» возможно придется заменить циркуляционный насос.

Из всего вышеизложенного выведем следующее равенство:

ΔP =ΔPтрение +ΔPарматура=((λ/d)(v²ρ/2)) + (ξ(v²ρ/2)) = ((λ/α)l(v²ρ/2)) + (ξ*(v²ρ/2)) =  R•l + z;

Отсюда получаем следующие равенства для R и z:

R = (λ/α)*(v²ρ/2) Па/м;

z = ξ*(v²ρ/2) Па;

Теперь давайте разберемся в том, как используя эти формулы рассчитать гидравлическое сопротивление.

Как на практике считают гидравлическое сопротивление системы отопления

Часто инженерам приходится рассчитывать системы отопления на больших объектах. В них большое количество приборов отопления и много сотен метров труб, но считать все равно нужно. Ведь без ГР не получится правильно подобрать циркуляционный насос. К тому же ГР позволяет установить еще до монтажа будет ли работать все это.

Для упрощения жизни проектировщикам разработаны различные численные и программные методы определения гидравлического сопротивления. Начнем от ручного к автоматическому.

Приближенные формулы расчета гидравлического сопротивления

Для определения удельных потерь на трение в трубопроводе используется следующая приближенная формула:

R = 5104 v1.9 /d1,32   Па/м;

Здесь сохраняется практически квадратичная зависимость от скорости движения жидкости в трубопроводе. Данная формула справедлива для скоростей 0,1-1,25 м/с.

Если у вас известен расход теплоносителя, то есть приближенная формула для определения внутреннего диаметра труб:

d = 0.75√G  мм;

Важно

Получив результат необходимо воспользоваться следующей таблицей для получения диаметра условного прохода:

Наиболее трудоемким будет расчет местных сопротивлений в фитингах, запорной арматуре и приборах отопления. Ранее я упоминал коэффициенты местного сопротивления ξ, их выбор делается по справочным таблицам. Если с углами и запорной арматурой все ясно, то вот выбор КМС для тройников превращается в целое приключение. Чтобы стало понятно о чем я говорю, посмотрим на следующую картинку:

По картинке видно, что у нас имеется целых 4 вида тройников, для каждого из которых будут свои КМС местного сопротивления. Трудность тут будет состоять в правильном выборе направления тока теплоносителя. Для тех кому очень нужно, приведу здесь таблицу с формулами из книги О.Д. Самарина «Гидравлические расчеты инженерных систем»:

Эти формулы можно перенести в MathCAD или любую другую программу и рассчитать КМС с погрешностью до 10 %. Формулы применимы для скоростей движения теплоносителя от 0,1 до 1,25 м/с и для труб с диаметром условного прохода до 50 мм. Такие формулы вполне подойдут для отопления коттеджей и частных домов. Теперь рассмотрим некоторые программные решения.

Программы для расчета гидравлического сопротивления в системах отопления

Сейчас в интернете можно найти много различных программ для расчета отопления платных и бесплатных. Понятное дело, что платные программы обладают более мощным функционалом, чем бесплатные и позволяют решать более широкий круг задач.

Такие программы имеет смыл приобретать профессиональным инженерам-проектировщикам. Обывателю, который хочет самостоятельно посчитать систему отопления в своем доме будет вполне достаточно бесплатных программ.

Ниже приведу список наиболее распространенных программных продуктов:

  • Valtec.PRG — бесплатная программа для расчета отопления и водоснабжения. Есть возможности расчета теплых полов и даже теплых стен
  • HERZ — целое семейство программ. С их помощью можно рассчитывать как однотрубные так и двухтрубные системы отопления. Программа имеет удобное графическое представление и возможность разбивки на поэтажные схемы. Имеется возможность расчета тепловых потерь
  • Поток — отечественная разработка, представляющая из себя комплексную САПР, которая может проектировать инженерные сети любой сложности. В отличии от предыдущих, Поток — платная программа. Поэтому простой обыватель вряд ли станет ей пользоваться. Она предназначена для профессионалов.

Есть еще несколько других решений. В основном от производителей труб и фитингов. Производители затачивают программы для расчета под свои материалы и тем самым в какой-то степени вынуждают покупать их материалы. Это такой маркетинговый ход и в нем нет ничего плохого.

 Итоги статьи

Расчет гидравлического сопротивления системы отопления дело прямо-таки не самое простое и требующее опыта. Ошибки здесь могут стоить очень дорого. Отдельные ветки и стояки могут не работать. По ним просто не будет циркуляции. По этой причине лучше чтобы этим занимались люди с образованием и опытом таких работ.

Сами монтажники практически никогда не занимаются расчетами. Они везде стремятся делать одни и те же решения, которые работали у них ранее. Но то, что работало у другого человека не обязательно будет работать у вас. По этому настоятельно рекомендую обратиться к инженеру и сделать полноценный проект.

На этом пока все, жду ваших вопросов в комментариях.

Гидравлический расчет трубопроводов

Гидравлический расчет газопровода: методы и способы вычисления + пример расчета

Трубы, соединяющие между собой различные аппараты химических установок. С помощью них происходит передача веществ между отдельными аппаратами. Как правило, несколько отдельных труб с помощью соединений создают единую трубопроводную систему.

Трубопровод – это система труб, объединенных вместе с помощью соединительных элементов, применяемая для транспортировки химических веществ и иных материалов. В химических установках для перемещения веществ, как правило, используются закрытые трубопроводы. Если речь идет о замкнутых и изолированных деталях установки, то они также относится к трубопроводной системе или сети.

В состав замкнутой трубопроводной системы могут входить:

  1. Трубы.
  2. Соединительные элементы труб.
  3. Герметизирующие уплотнения, соединяющие два разъемных участка трубопровода.

Все вышеперечисленные элементы изготавливаются отдельно, после чего соединяются в единую трубопроводную систему. Помимо этого трубопроводы могут быть оснащены обогревом и необходимой изоляцией, изготовленной из различных материалов.

Выборе размера труб и материалов для из изготовления осуществляется на основе технологических и конструктивных требований, предъявляемых в каждом конкретном случае. Но для стандартизации размеров труб была проведена их классификация и унификация. Основным критерием стало допустимое давление при котором возможна эксплуатация трубы.

Условный проход DN

Условный проход DN (номинальный диаметр) – это параметр, который используется в системах трубопровода как характеризующий признак, с помощью которого происходит подгонка деталей трубопровода, таких как трубы, арматура, фитинги и другие.

Номинальный диаметр является безразмерной величиной, однако численно приблизительно равен внутреннему диаметру трубы. Пример обозначения условного прохода: DN 125.

Так же условный проход не обозначается на чертежах и не заменяет собой реальные диаметры труб. Он примерно соответствует диаметру в свету у определенных частей трубопровода (рис. 1.1).

Если говорить о числовых значениях условных переходах, то они выбраны таким образом, что пропускная способность трубопровода увеличивается в диапазоне от 60 до 100% при переходе от одного условного прохода к последующему.

Рис. 1.1 Условный диаметр

Общепринятые номинальные диаметры:

3, 4, 5, 6, 8, 10, 15, 20, 25, 32, 40, 50, 65, 80, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2600, 2800, 3000, 3200, 3400, 3600, 3800, 4000.

Размеры этих условных проходов установлены с расчетом на то, чтобы не возникало проблем с припасовкой деталей друг к другу. Определения номинальный диаметр на основе значения внутреннего диаметра трубопровода, выбирается то значение условного прохода, которое ближе всего находится к диаметру трубы в свету.

Номинальное давление PN

Номинальное давление PN – величина, соответствующая максимальному давлению перекачиваемой среды при 20 °C, при котором возможна длительная эксплуатация трубопровода, имеющего заданные размеры.

Номинальное давление является безразмерной величиной.

Как и номинальный диаметр, номинальное давление было градуировано на основе практики эксплуатации накопленного опыта (табл. 1.1).

Номинальное давление для конкретного трубопровода выбирается на основе реально создаваемого в нем давления, путем выбора ближайшего большего значения.

Совет

При этом фитинги и арматура в этом трубопроводе также должны соответствовать такой же ступени давления.

Толщина стенок трубы рассчитывается исходя из номинального давления и должна обеспечивать работоспособность трубы при значении давления равном номинальному (табл. 1.1).

Допустимое избыточное рабочее давление pe,zul

Номинальное давление используется только для рабочей температуры 20°C. С повышением температуры нагрузочные способности трубы снижаются. Вместе с этим соответственно снижается и допустимое избыточное давление. Значение pe,zul показывает максимальное избыточное давление, которое может быть в трубопроводной системе при повышении значения рабочей температуры (рис. 1.2).

Рис. 1.2 График допустимых избыточных давлений

При выборе материалов, которые будут использоваться для изготовления трубопроводов, берутся в расчет такие показатели, как характеристики среды, которая будет транспортироваться по трубопроводу и рабочее давление, предполагаемое в данной системе. Стоит так же учитывать возможность корродирующего воздействия со стороны перекачиваемой среды на материал стенок трубы.

Практически все трубопроводные системы и химические установки производятся из стали. Для общего применения в случае отсутствия высоких механических нагрузок и корродирующего действия для изготовления трубопроводом используется серый чугун или нелегированные конструкционные стали.

В случае более высокого рабочего давления и отсутствия нагрузок с коррозионно активным действием применяется трубопровод из улучшенной стали или с использованием стального литья.

Если корродирующее воздействие среды велико или к чистоте продукта предъявлены высокие требования, то трубопровод изготавливается из нержавеющей стали.

Если трубопровод должен быть устойчив к воздействию морской воды, то для его изготовления используются медно-никелевые сплавы. Также могут применяться алюминиевые сплавы и такие металлы как тантал или цирконий.

Все большее распространение в качестве материала трубопровода получают различные виды пластмасс, что обуславливается их высокой стойкостью к коррозии, малому весу и легкости в обработке. Такой материал подходит для трубопровода со сточными водами.

Фасонные части трубопровода

Трубопроводы, изготовленные из пластичных материалов пригодных для сварки, собираются на месте монтажа. К таким материалам можно отнести сталь, алюминий, термопласты, медь и т.д..

Для соединения прямых участков труб используются специально изготовленные фасонные элементы, например, колена, отводы, затворы и уменьшения диаметров (рис. 1.3).

Эти фитинги могут быть частью любого трубопровода.

Рис. 1.3 Фасонные элементы трубопровода

Для монтирования отдельных частей трубопровода и фитингов используются специальные соединения. Также используются для присоединения к трубопроводу необходимой арматуры и аппаратов.

Соединения выбираются (рис. 1.4) в зависимости от:

  1. материалов, которые используются для изготовления труб и фасонных элементов. Основной критерий выбора – возможность сварки.
  2. условий работы: низкого или высокого давления, а также низкой или высокой температуры.
  3. производственных требований, которые предъявляются к трубопроводной системе.
  4. наличия разъемных или неразъемных соединений в трубопроводной системе.
Рис. 1.4 Типы соединения труб

Геометрическая форма предметов может быть изменена как путем силового воздействия на них, так и при изменении их температуры.

Данные физические явления приводят к тому, что трубопровод, который монтируется в ненагруженном состоянии и без температурного воздействия, в процессе эксплуатации под давлением или воздействием температур претерпевает некоторые линейные расширения или сжатия, которые негативно сказываются на его эксплуатационных качествах.

В случае, когда нет возможности компенсировать расширение, происходит деформация трубопроводной системы. При этом могут возникнуть повреждения фланцевых уплотнений и тех мест соединения труб между собой.

Тепловое линейное расширение

При компоновке трубопроводов важно учитывать возможное изменение длины в результате повышения температуры или так называемого теплового линейного расширения, обозначаемого ΔL. Данное значение зависит от длины трубы, которая обозначается Lo и разности температур Δϑ =ϑ2-ϑ1 (рис. 1.5).

В вышеприведенной формуле а – это коэффициент теплового линейного расширения данного материала. Этот показатель равен величине линейного расширения трубы длиной 1 м при повышении температуры на 1°C.

Элементы компенсации расширения труб

Отводы труб

Благодаря специальным отводам, которые ввариваются в трубопровод, можно компенсировать естественное линейное расширение труб. Для этого используются компенсирующие U-образные, Z-образные и угловые отводы, а также лирные компенсаторы (рис. 1.6).

Рис. 1.6 Компенсирующие трубные отводы

Они воспринимают линейное расширение труб за счет собственной деформации. Однако такой способ возможен только с некоторыми ограничениями. В трубопроводах с высоким давлением для компенсации расширения используются колени под разными углами. Из-за давления, которое действует в таких отводах, возможно усиление коррозии.

Волнистые трубные компенсаторы

Данное устройство состоит из тонкостенной металлической гофрированной трубы, которая называется сильфоном и растягивается в направлении трубопровода (рис. 1.7).

Данные устройства устанавливаются в трубопровод. Предварительный натяг используется в качестве специального компенсатора расширения.

Рис. 1.7 Волнистый трубный компенсатор

Если говорить про осевые компенсаторы, то они способны компенсировать только те линейные расширения, которые происходят вдоль оси трубы. Чтобы избежать бокового смещения и внутреннего загрязнения используется внутреннее направляющее кольцо.

Для того чтобы защитить трубопровод от внешних повреждений, как правило, используется специальная облицовка.

Компенсаторы, которые не содержат внутреннее направляющее кольцо, поглощают боковые сдвиги, а также вибрацию, которая может исходить от насосов.

Изоляция труб

В том случае, если по трубопроводу перемещается среда с высокой температурой, необходима его изоляция во избежание потери тепла. В случае перемещения по трубопроводу среды с низкой температурой изоляцию применяют для предотвращения ее нагрева внешней средой. Изоляция в таких случаях осуществляется с помощью специальных изоляционных материалов, которые размещаются вокруг труб.

В качестве таких материалов, как правило, используются:

  1. При низких температурах до 100°C используются жесткие пенопласты, например, полистирол или полиуретан.
  2. При средних температурах около 600°C используются фасонные оболочки или минеральное волокно, например, каменная шерсть или стеклянный войлок.
  3. При высоких температурах в районе 1200°C – керамическое волокно, например, глиноземное.

Трубы, условный проход которых ниже DN 80, а толщина слоя изоляции меньше 50 мм, как правило, изолируются при помощи изоляционных фасонных элементов. Для этого две оболочки кладутся вокруг трубы и скрепляются металлической лентой, а после этого закрываются жестяным кожухом (рис. 1.8).

Рис. 1.8 Теплоизоляция при помощи фасонных элементов

Трубопроводы, которые имеют условный проход больше DN 80, должны снабжаться теплоизоляцией с нижним каркасом (рис. 1.9). Такой каркас состоит из зажимных колец, распорок, а также металлической облицовки, изготовленной из оцинкованной мягкой стали или нержавеющей листовой стали. Между трубопроводом и металлическим кожухом пространство заполняется изоляционным материалом.

Рис. 1.9 Теплоизоляция с нижним каркасом

Толщина изоляции рассчитывается путем определения затрат на его изготовление, а также убытков, которые возникают из-за потери тепла, и составляет от 50 до 250 мм.

Теплоизоляция должна наноситься по всей длине трубопроводной системы, включая зоны отводов и колен. Очень важно следить, чтобы не возникали незащищенные места, которые смогут стать причиной тепловых потерь.

Фланцевые соединения и арматура должны снабжаться фасонными изоляционными элементами (рис. 1.10).

Обратите внимание

Это обеспечивает беспрепятственный доступ к месту соединения без необходимости снимать изоляционный материал со всей трубопроводной системы в том случае, если произошло нарушение герметичности.

Рис. 1.10 Теплоизоляция фланцевого соединения

В том случае, если изоляция трубопроводной системы выбрана правильно, решается множество задач, таких как:

  1. Избегание сильного падения температуры в протекающей среде и, как следствие, экономия энергии.
  2. Предотвращение падения температуры в газопроводных системах ниже точки росы. Таким образом, удается исключить образование конденсата, который может привести к значительным коррозионным разрушениям.
  3. Избегание выделения конденсата в паровых трубопроводах.

Читайте также:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *