Гидравлический расчет системы отопления на конкретном примере
Table of Contents
Гидравлический расчет системы отопления + расчет по площади
Отопление на основе циркуляции горячей воды — наиболее распространенный вариант обустройства частного дома. Для грамотной разработки системы необходимо иметь предварительные результаты анализа, так называемый гидравлический расчет системы отопления, увязывающий давления на всех участках сети с диаметрами труб.
О методике его выполнения пойдет речь в представленной статье.
Понятие гидравлического расчета
Определяющим фактором технологического развития систем отопления стала обычная экономия на энергоноситель. Стремление сэкономить заставляет тщательней подходить к проектированию, выбору материалов, способов монтажа и эксплуатации отопления для жилища.
Поэтому, если вы решили создать уникальную и в первую очередь экономную систему отопления для своей квартиры или дома, тогда рекомендуем под спойлер.
Перед тем как дать определение гидравлического расчёта системы, нужно ясно и четко понимать, что индивидуальная система отопления квартиры и дома расположена условно на порядок выше относительно центральной системы отопления большого здания.
Обратите внимание
Персональная отопительная система базируется на принципиально ином подходе к понятиям тепла и энергоресурса.
Суть гидравлического расчета заключается в том, что расход теплоносителя не задаются заранее с существенным приближением к реальным параметрам, а определяются путем увязки диаметров трубопровода с параметрами давления во всех кольцах системы
Достаточно провести тривиальное сравнение этих систем по следующим параметрам.
- Центральная отопительная система (котельня-дом-квартира) основывается на стандартных типах энергоносителя — уголь, газ. В автономной системе можно использовать практический любое вещество, которое имеет высокую удельную теплоту сгорания, или же комбинацию из нескольких жидких, твёрдых, гранулированных материалов.
- ЦОС построена на обычных элементах: металлические трубы, «топорные» батареи, запорная арматура. Индивидуальная же система отопления позволяет комбинировать самые разные элементы: многосекционные радиаторы с хорошей теплоотдачей, высокотехнологичные термостаты, ПВХ и медные трубопроводы, краны, заглушки, фитинги и конечно собственные более экономичные котлы, циркуляционные насосы.
- Если зайти в квартиру типичного панельного дома, построенного лет 20-40 назад, видим что система отопления сводиться к наличию 7-секционной батареи под окном в каждой комнате квартиры плюс вертикальную трубу через весь дом (стояк), с помощью которой можно «общаться» с соседями сверху/снизу. То ли дело автономная система отопления (АСО) — позволяет строить систему любой сложности с учётом индивидуальных пожеланий жильцов квартиры.
- В отличи от ЦОС, отдельная система отопления учитывает достаточно внушительный список параметров, которые влияют на передачу, расход энергии и утери теплоты. Температурный режим окружающей среды, требуемый диапазон температуры в помещениях, площадь и объём помещения, количество окон и дверей, назначение помещений и т.д.
Таким образом, гидравлический расчет системы отопления (ГРСО) — это условный набор вычисляемых характеристик отопительной системы, который предоставляет исчерпывающую информацию о таких параметрах, как диаметр труб, количество радиаторов и клапанов.
Данный тип радиаторов устанавливался в большинстве панельных домов на постсоветском пространстве.
Экономия на материалах и отсутствие конструкторской идеи «на лицо»
ГРСО позволяет правильно выбрать водно-кольцевой насос (отопительного котла) для транспортировки горячей воды к конечным элементам системы отопления (радиаторам) и, в конечном результате, иметь максимально уравновешенную систему, что напрямую влияет на финансовые вложения в части отопления жилища.
Еще один тип отопительного радиатора для ЦОС. Это более универсальное изделие, которое может иметь любое количество рёбер. Так можно увеличить или уменьшить площадь теплообмена
Последовательность шагов расчета
Говоря о расчете системы отопления, отмечаем что эта процедура является наиболее неоднозначной и важной в части проектирования.
Перед выполнением расчёта нужно произвести предварительный анализ будущей системы, например:
- установить тепловой баланс во всех и конкретно каждой комнаты квартиры;
- выбрать и установить радиаторы, теплообменные поверхности, теплоотдающие панели;
- подобрать терморегуляторы, клапаны и регуляторы давления;
- определить общую схему транспортировки теплоносителя (полный и малый контур, одно- или двух-трубная магистраль).
Кроме того, нужно определить участки системы с максимальным и минимальным расходом носителя тепла.
В результате проведения гидравлического расчёта получаем несколько важных характеристик гидравлической системы, которые дают ответы на следующие вопросы:
- какая должна быть мощность источника отопления;
- какой расход и скорость теплоносителя;
- какой нужен диаметр основной магистрали теплового трубопровода;
- какие возможные потери теплоты и самой массы теплоносителя.
Еще одним важным аспектом гидравлического расчёт является процедура баланса (увязки) всех частей (веток) системы во время экстремальных тепловых режимов с помощью регулирующих приборов.
Выделяют несколько основных видов отопительных изделий: чугунные и алюминиевые многосекционные, стальные панельные, биметаллические радиаторы и ковекторы.
Но наиболее распространёнными являются алюминиевые многосекционные радиаторы
Расчетной зоной трубопроводной магистрали есть участок с постоянным диаметром самой магистрали, а также неизменяемым расходом горячей воды, который определён по формуле теплового баланса комнат. Перечисление расчётных зон начинается от насоса или источника тепла.
Начальные условия примера
Для более конкретного пояснения всех деталей гидравлического просчёта возьмем конкретный пример обычного жилищного помещения. В наличии имеем классическую 2-комнатную квартиру панельного дома, общей площадью 65,54 м2, которая включает две комнаты, кухню, раздельные туалет и ванная, двойной коридор, спаренный балкон.
После сдачи в эксплуатацию получили следующую информацию относительно готовности квартиры. Описываемая квартира включает обработанные шпаклевкой и грунтом стены из монолитных железо-бетонных конструкций, окна из профиля с двух камерными стеклами, тырсо-прессованные межкомнатные двери, керамическая плитка на полу санузла.
Типичный панельный 9-этажный дом на четыре подъезда. На каждом этаже по 3 квартиры: одна 2-комнатная и две 3-комнатных. Квартира расположена на пятом этаже
Кроме того, представленное жильё уже оснащено медной проводкой, распределителями и отдельным щитком, газовой плитой, ванной, умывальником, унитазом, полотенцесушителем, мойкой.
И самое главное в жилых комнатах, ванной и кухне уже имеются алюминиевые отопительные радиаторы. Вопрос относительно труб и котла остаётся открытым.
Как производится сбор данных
Гидравлический расчёт системы в большинстве своём основывается на вычислениях связанных с расчетом отопления по площади помещения.
Поэтому необходимо иметь следующую информацию:
- площадь каждого отдельного помещения;
- габариты оконных и дверных разъёмов (внутренние двери на потери теплоты практически не влияют);
- климатические условия, особенности региона.
Площадь общей комнаты — 18,83 м2, спальня — 14,86 м2, кухня — 10,46 м2, балкон — 7,83 м2 (сумма), коридор — 9,72 м2 (сумма), ванная — 3,60 м2, туалет — 1,5 м2. Входные двери — 2,20 м2, оконная витрина общей комнаты — 8,1 м2, окно спальни — 1,96 м2, окно кухни — 1,96 м2.
Высота стен квартиры — 2 метра 70 см. Внешние стены изготовлены с бетона класса В7 плюс внутренняя штукатурка, толщиной 300 мм. Внутренние стены и перегородки — несущие 120 мм, обычные — 80 мм. Пол и соответственно потолок из бетонных плит перекрытия класса В15, толщина 200 мм.
Планировка данной квартиры предоставляет возможность создать одну единственную ветку отопления, проходящую через кухню, спальню и общую комнату, что обеспечит среднюю температуру 20-22⁰C в помещениях
Что касаемо окружающей среды? Квартира находится в доме, который расположен в средине микрорайона небольшого города. Город расположен в некой низменности, высота над уровнем моря 130-150 метров. Климат умеренно континентальный с прохладной зимой и достаточно тёплым летом.
Важно
Средняя годовая температура, +7,6°C. Средняя температура января — -6,6°C, июля — +18,7°C. Ветер — 3,5 м/с, влажность воздуха средняя — 74 %, количество осадков 569 мм.
Анализируя климатические условия региона, нужно отметить, что имеем дело с большим разбросом температур, что в свою очередь влияет на особое требование к регулировке системы отопления квартиры.
Мощность генератора тепла
Одним из основных узлов отопительной системы является котел: электрический, газовый, комбинированный — на данном этапе не имеет значения. Поскольку нам важна главная его характеристика — мощность, то есть количество энергии за единицу времени, которая будет уходить на отопление.
Мощность самого котла определяется по ниже приведённой формуле:
Wкотла = (Sпомещ*Wудел) / 10,
где Sпомещ — сумма площадей всех комнат, которые требую отопления, Wудел — удельная мощность с учётом климатических условий местоположения (вот для чего нужно было знать климат региона).
Что характерно, для разных климатических зон имеем следующие данные:
- для северных областей — 1,5 — 2 кВт/м2;
- для центральных областей — 1 — 1,5 кВт/м2;
- для южных областей — 0,6 — 1 кВт/м2.
Эти цифры достаточно условны, но тем не менее дают явный численный ответ относительно влияния окружающей среды на систему отопления квартиры.
На данной карте представлены климатические зоны с разными температурными режимами.
От расположения жилья относительно зоны и зависит сколько нужно тратить на обогрев метра квадратного кВатт энергии
Сумма площади квартиры которую необходимо отапливать — равна общей площади квартиры и равна 65,54-1,80-6,03=57,71 м2 (минус балкон).
Удельная мощность котла для центрального региона с холодной зимой — 1,4 кВт/м2. Таким образом, в нашем примере расчётная мощность котла отопления эквивалентна 8,08 кВт.
Динамические параметры теплоносителя
Переходим к следующему этапу расчетов — анализ потребления теплоносителя. В большинстве случаев система отопления квартиры отличается от иных систем — это связанно с количеством отопительных панелей и протяженностью трубопровода. Давление используется в качестве дополнительной «движущей силы» потока вертикально по системе.
В частных одно- и многоэтажных домах, старых панельных многоквартирных домах применяются системы отопления с высоким давлением, что позволяет транспортировать теплоотдающее вещество на все участки разветвлённой, многокольцевой системы отопления и поднимать воду на всю высоту (до 14-ого этажа) здания.
Напротив, обычная 2- или 3- комнатная квартира с автономным отоплением не имеет такого разнообразия колец и ветвей системы, она включает не более трех контуров.
А значит и транспортировка теплоносителя происходит с помощью естественного процесса протекания воды. Но также можно использовать циркуляционные бытовые электрические насосы, нагрев обеспечивается газовым/электрическим котлом.
Рекомендуем применять циркуляционный насос для отопления помещений более 100 м2. Монтировать насос можно как до так и после котла, но обычно его ставят на «обратку» — меньше температура носителя, меньше завоздушенность, больше срок эксплуатации насоса
Специалисты в сфере проектирования и монтажа систем отопления определяют два основных подхода в плане расчёта объёма теплоносителя:
- По фактической емкости системы. Суммируются все без исключения объёмы полостей, где будет протекать поток горячей воды: сумма отдельных участков труб, секций радиаторов и т.д. Но это достаточно трудоёмкий вариант.
- По мощности котла. Здесь мнения специалистов разошлись очень сильно, одни говорят 10, другие 15 литров на единицу мощности котла.
С прагматичной точки зрения нужно учитывать, тот факт что наверное система отопления будет не только подавать горячую воду для комнаты, но и нагревать воду для ванной/душа, умывальника, раковины и сушилки (а возможно и для гидромассажа или джакузи). Этот вариант попроще.
Поэтому в данном случае рекомендуем установить 13,5 литров на единицу мощности. Умножив этот число на мощность котла (8,08 кВт) получаем расчётный объём водяной массы — 109,08 литров.
Вычисляемая скорость теплоносителя в системе является именно тем параметром, который позволяет подбирать определённый диаметр трубы для системы отопления. Она высчитывается по следующей формуле:
Совет
V = (0,86*W*k)/t-to,
где W — мощность котла, t — температура подаваемой воды, to — температура воды в обратном контуре, k — кпд котла (0,95 для газового котла). (0.86 * 8080* 0.95)/80-60 = 6601,36/20=330кг/ч. Таким образом за один час в системе перемещается 330 килограмм теплоносителя (литров воды), а ёмкость системы около 110 литров.
Определение диаметра труб
Для окончательного определения диаметра и толщины отопительных труб осталось обсудить вопрос относительно потерь теплоты.
Максимальное количество тепла уходит из помещения через стены — до 40%, через окна — 15%, пол — 10%, всё остальное через потолок/крышу. Для квартиры характерны потери в основном через окна и балконные модули
Существует несколько видов потерь теплоты в отапливаемых помещениях:
- Потери давления потока в трубе. Этот параметр прямо пропорционален произведению удельной потери на трение внутри трубы (предоставляет производитель) на общую длину трубы. Но учитывая текущую задачу такие потери можно не учитывать.
- Потери напора на местных трубных сопротивлениях — утери теплоты на фитингах и внутри оборудования. Но учитывая условия задачи, небольшое количество фитинг-изгибов и число радиаторов, такими потерями можно пренебречь.
- Существует ещё один тип тепловых потерь, но он больше связан с расположением помещения относительного остального здания. Для обычной квартиры, которая находиться в средине дома и соседствует слева/справа/сверху/снизу с другими квартирами, тепловые потери через боковые стены, потолок и пол практически равны «0».
В расчёт можно только взять потери через фасадную часть квартиры — балкон и центральное окно общей комнаты. Но это вопрос закрывается за счёт дополнения 2-3 секций к каждому из радиаторов.
Как видно из таблицы, диаметр металлической трубы должен составлять 16-18 мм с толщиной 1,5-2 мм или 20-25 мм пластиковые ПВХ-трубы с толщиной стенки 3-4 мм
Анализируя выше изложенную информацию, стоит отметить что для рассчитанной скорости горячей воды в системе отопления известна табличная скорость перемещения частиц воды относительно стенки трубы в горизонтальном положении 0,3-0,7 м/с.
В помощь мастеру представляем так называемый чек-лист проведения вычислений для типичного гидравлического расчёта системы отопления:
- сбор данных и расчёт мощности котла;
- объём и скорость теплоносителя;
- потери теплоты и диаметр труб.
Иногда при просчёте можно получить достаточно большой диаметр трубы, что бы перекрыть расчётный объём теплоносителя. Эту проблему можно решить увеличением литража котла или добавлением дополнительного расширительного бака.
Выводы и полезное видео по теме
Особенности, преимущества и недостатки естественной и принудительной систем циркуляции теплоносителя для систем отопления:
Подводя итого вычислений гидравлического расчёта, в результате получили конкретные физические характеристики будущей системы отопления.
Естественно, что это упрощенная схема расчёта, которая даёт приблизительные данные относительно гидравлического расчёта для системы отопления типичной 2-комнатной квартиры.
Гидравлический расчет системы отопления: главные цели и задачи выполнения данного действия
Эффективность отопительной системы вовсе не гарантируют качественные трубы и высокопроизводительный теплогенератор.
Наличие ошибок, допущенных при монтаже, может свести на нет работу котла, работающего на полную мощность: либо в помещениях будет холодно, либо затраты на энергоносители будут неоправданно высокими.
Поэтому важно начинать с разработки проекта, одним из важнейших разделов которого является гидравлический расчет системы отопления.
Теплоноситель циркулирует по системе под давлением, которое не является постоянной величиной. Оно снижается из-за наличия сил трения воды о стенки труб, сопротивления на трубной арматуре и фитингах. Домовладелец также вносит свою лепту, корректируя распределение тепла по отдельным помещениям.
Давление растет, если температура нагрева теплоносителя повышается и наоборот – падает при ее снижении.
Чтобы избежать разбалансировки отопительной системы, необходимо создать условия, при которых к каждому радиатору поступает столько теплоносителя, сколько необходимо для поддержания заданной температуры и восполнения неизбежных теплопотерь.
Главной целью гидравлического расчета является приведение в соответствие расчетных расходов по сети с фактическими или эксплуатационными.
На данном этапе проектирования определяются:
- диаметр труб и их пропускная способность;
- местные потери давления по отдельным участкам системы отопления;
- требования гидравлической увязки;
- потери давления по всей системе (общие);
- оптимальный расход теплоносителя.
Для производства гидравлического расчета необходимо проделать некую подготовку:
- Собрать исходные данные и систематизировать их.
- Выбрать методику расчета.
Первым делом проектировщик изучает теплотехнические параметры объекта и выполняет теплотехнический расчет. В итоге у него появляется информация о количестве тепла, необходимом для каждого помещения. После этого выбираются отопительные приборы и источник тепла.
Схематичное изображение отопительной системы в частном доме
На стадии разработки принимается решение о типе отопительной системы и особенностях ее балансировки, подбираются трубы и арматура. По окончании составляется аксонометрическая схема разводки, разрабатываются планы помещений с указанием:
- мощности радиаторов;
- расхода теплоносителя;
- расстановки теплового оборудования и пр.
Все участки системы, узловые точки маркируются, подсчитывается и наносится на чертеж длина колец.
Расчет диаметра труб
Расчет сечения труб должен опираться на результаты теплового расчета, обоснованные экономически:
- для двухтрубной системы – разность между tr (горячим теплоносителем) и to (охлажденным – обраткой);
- для однотрубной – расход теплоносителя G, кг/ч.
Кроме того, в расчете должна учитываться скорость движения рабочей жидкости (теплоносителя) – V . Ее оптимальная величина находится в диапазоне 0,3-0,7 м/с. Скорость обратно пропорциональна внутреннему диаметру трубы.
При скорости движения воды, равной 0,6 м/с в системе появляется характерный шум, если же она менее 0,2 м/с, появляется риск возникновения воздушных пробок.
Для расчетов потребуется еще одна скоростная характеристика – скорость теплопотока. Она обозначается буквой Q, измеряется в ваттах и выражается в количестве тепла, переданного в единицу времени
Q (Вт) = W (Дж)/t (с)
Кроме вышеперечисленных исходных данных для расчета потребуются параметры отопительной системы – длина каждого участка с указанием приборов, подключенных к нему. Эти данные для удобства можно свести в таблицу, пример которой приведен ниже.
Таблица параметров участков
Обозначение участка | Длина участка в метрах | Количество приборов а участке, шт. |
1-2 | 1,8 | 1 |
2-3 | 3,0 | 1 |
3-4 | 2,8 | 2 |
4-5 | 2,9 | 2 |
Расчет диаметров труб достаточно сложный, поэтому проще воспользоваться справочными таблицами. Их можно найти на сайтах производителей труб, в СНиП или специальной литературе.
Монтажники при подборе диаметра труб пользуются правилом, выведенным на основании анализа большого числа отопительных систем. Правда, это касается только небольших частных домов и квартир.
Практически все отопительные котлы оборудованы патрубками подачи и обратки ¾ и ½ дюйма. Такой трубой и выполняется разводка до первого разветвления.
Обратите внимание
Далее на каждом участке размер трубы уменьшают на один шаг.
Такой подход не оправдывает себя, если в доме имеется два или более этажей. В этом случае приходится производит полноценный расчет и обращаться к таблицам.
Вычисление местных сопротивлений
Местные сопротивления возникают в трубе и арматуре. На величину данных показателей влияют:
- шероховатость внутренней поверхности трубы;
- наличие мест расширения или сужения внутреннего диаметра трубопровода;
- повороты;
- протяженность;
- наличие тройников, шаровых кранов, приборов балансировки и их количество.
Сопротивление рассчитывается для каждого участка, который характеризуется постоянным диаметром и неизменным расходом теплоносителя (в соответствии с тепловым балансом помещения).
Исходные данные для расчета:
- длина расчетного участка – l, м;
- диаметр трубы – d, мм;
- заданная скорость теплоносителя – u, мм;
- характеристики регулирующей арматуры, предоставляемые производителем;
- коэффициент трения (зависит от материала трубы), λ;
- потери на трение – ∆Pl, Па;
- плотность теплоносителя (расчетная) – ρ = 971,8 кг/м3;
- толщина стенки трубы – dн х δ, мм;
- эквивалентная шероховатость трубы – kэ, мм.
Гидравлическое сопротивление – ∆P на участке сети рассчитывается по формуле Дарси-Вейсбаха.
Символ ξ в формуле означает коэффициент местного сопротивления.
Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.
Гидравлическая увязка системы производится на основании:
- проектной нагрузки (массового расхода теплоносителя);
- данных производителей труб по динамическому сопротивлению;
- количества местных сопротивлений на рассматриваемом участке;
- технических характеристик арматуры.
Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.
Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где
S – произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).
Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.
Определение потерь
Гидравлическое сопротивление главного циркуляционного кольца представляет собой сумму потерь его составляющих элементов:
- первичного контура – ∆Plk;
- местных систем – ∆Plм;
- генератора тепла – ∆Pтг;
- теплообменника ∆Pто.
Сумма всех этих величин и дает полное гидравлическое сопротивление системы ∆Pсо.
Гидравлический расчет системы отопления – пример расчета
В качестве примера рассмотрим двухтрубную гравитационную систему отопления.
Исходные данные для расчета:
- расчетная тепловая нагрузка системы – Qзд. = 133 кВт;
- параметры системы – tг = 750С, tо = 600С;
- расход теплоносителя (расчетный) – Vсо = 7,6 м3/ч;
- присоединение отопительной системы к котлам производится через гидравлический разделитель горизонтального типа;
- автоматика каждого из котлов в течение всего года поддерживает постоянную температуру теплоносителя на выходе – tг = 800С;
- автоматический регулятор перепада давления устанавливается на вводе каждого распределителя;
- система отопления от распределителей смонтирована из металлопластиковых труб, а теплоснабжение распределителей производится посредством стальных труб (водогазопроводных).
Диаметры участков трубопроводов подобраны с использованием номограммы для заданной скорости теплоносителя 0,4-0,5 м/с.
На участке 1 установлен клапан dу 65. Его сопротивление согласно информации производителя составляет 800 Па.
На участке 1а установлен фильтр диаметром 65 мм и с пропускной способностью 55 м3/ч. Сопротивление этого элемента составит:
0,1 х (G/kv) х 2 = 0,1 х (7581/55) х 2 = 1900 Па.
Варианты двухтрубной отопительной системы
Сопротивление трехходового клапана dу = 40 мм и kv = 25 м3/ч составит 9200 Па.
Суммарные потери давления в системе снабжения теплом распределителей будут равняться 21514 Па или приблизительно 21,5 кПа.
Аналогичным образом производится расчет остальных частей системы теплоснабжения распределителей. При расчете системы отопления от распределителя выбирается основное циркуляционное кольцо через наиболее нагруженное отопительное устройство. Гидравлический расчет производится с использованием 1-го направления.
Видео на тему
Гидравлический расчет однотрубной и двухтрубной системы отопления с формулами, таблицами и примерами
Экономичность теплового комфорта в доме обеспечивают расчет гидравлики, её качественный монтаж и правильная эксплуатация.
Главные компоненты отопительной системы — источник тепла (котёл), тепловая магистраль (трубы) и приборы теплоотдачи (радиаторы).
Для эффективного теплоснабжения необходимо сохранить первоначальные параметры системы при любых нагрузках независимо от времени года.
Перед началом гидравлических расчётов выполняют:
- Сбор и обработку информации по объекту с целью:
- определения количества требуемого тепла;
- выбора схемы отопления.
- Тепловой расчёт системы отопления с обоснованием:
- объёмов тепловой энергии;
- нагрузок;
- теплопотерь.
Если водяное отопление признаётся оптимальным вариантом, выполняется гидравлический расчёт.
Для расчёта гидравлики с помощью программ требуется знакомство с теорией и законами сопротивления. Если приведенные ниже формулы покажутся вам сложными для понимания, можно выбрать параметры, которые мы предлагаем в каждой из программ.
Расчёты проводились в программе Excel. Готовый результат можно посмотреть в конце инструкции.
Что такое гидравлический расчёт
Это третий этап в процессе создания тепловой сети. Он представляет собой систему вычислений, позволяющих определить:
- диаметр и пропускную способность труб;
- местные потери давления на участках;
- требования гидравлической увязки;
- общесистемные потери давления;
- оптимальный расход воды.
Согласно полученным данным осуществляют подбор насосов.
Для сезонного жилья, при отсутствии в нём электричества, подойдёт система отопления с естественной циркуляцией теплоносителя (ссылка на обзор).
Основная цель гидравлического расчёта — обеспечить совпадение расчётных расходов по элементам цепи с фактическими (эксплуатационными) расходами.
Количество теплоносителя, поступающего в радиаторы, должно создать тепловой баланс внутри дома с учётом наружных температур и тех, что заданы пользователем для каждого помещения согласно его функциональному назначению (подвал +5, спальня +18 и т.д.).
Комплексные задачи — минимизация расходов:
- капитальных – монтаж труб оптимального диаметра и качества;
- эксплуатационных:
- зависимость энергозатрат от гидравлического сопротивления системы;
- стабильность и надёжность;
- бесшумность.
Замена централизованного режима теплоснабжения индивидуальным упрощает методику вычислений
Для автономного режима применимы 4 метода гидравлического расчёта системы отопления:
- по удельным потерям (стандартный расчёт диаметра труб);
- по длинам, приведённым к одному эквиваленту;
- по характеристикам проводимости и сопротивления;
- сопоставление динамических давлений.
Два первых метода используются при неизменном перепаде температуры в сети.
Два последних помогут распределить горячую воду по кольцам системы, если перепад температуры в сети перестанет соответствовать перепаду в стояках/ответвлениях.
Расчет гидравлики системы отопления
Нам потребуются данные теплового расчёта помещений и аксонометрической схемы.
Аксонометрическая схема
Вынесите данные в эту таблицу:
записать | записать | записать |
Шаг 1: считаем диаметр труб
В качестве исходных данных используются экономически обоснованные результаты теплового расчёта:
1а. Оптимальная разница между горячим (tг) и охлаждённым( tо) теплоносителем для двухтрубной системы – 20º
1б. Расход теплоносителя G, кг/час — для однотрубной системы.
2. Оптимальная скорость движения теплоносителя – ν 0,3-0,7 м/с.
Чем меньше внутренний диаметр труб — тем выше скорость. Достигая отметки 0,6 м/с, движение воды начинает сопровождаться шумом в системе.
3. Расчётная скорость теплопотока – Q, Вт.
Выражает количество тепла (W, Дж), переданного в секунду (единицу времени τ):
Формула для расчёта скорости теплопотока
4. Расчетная плотность воды: ρ = 971,8 кг/м3 при tср = 80 °С
5. Параметры участков:
1 – 2 | 1.78 | 1 |
2 – 3 | 2.60 | 1 |
3 – 4 | 2.80 | 2 |
4 – 5 | 2.80 | 2 |
5 – 6 | 2.80 | 4 |
6 – 7 | 2.80 | |
7 – 8 | 2.20 | |
8 – 9 | 6.10 | 1 |
9 – 10 | 0.5 | 1 |
10 – 11 | 0.5 | 1 |
11 – 12 | 0.2 | 1 |
12 – 13 | 0.1 | 1 |
13 – 14 | 0.3 | 1 |
14 – 15 | 1.00 | 1 |
Для определения внутреннего диаметра по каждому участку удобно пользоваться таблицей.
ν | Q | G | v | Q | G | v | Q | G | v | Q | G | v | Q | G | v | Q | G | v | Q | G |
0.3 | 1226 | 53 | 0.3 | 1916 | 82 | 0.3 | 2759 | 119 | 0.3 | 4311 | 185 | 0.3 | 7664 | 330 | 0.3 | 11975 | 515 | 0.3 | 47901 | 2060 |
0.4 | 1635 | 70 | 0.4 | 2555 | 110 | 0.4 | 3679 | 158 | 0.4 | 5748 | 247 | 0.4 | 10219 | 439 | 0.4 | 15967 | 687 | 0.4 | 63968 | 2746 |
0.5 | 2044 | 88 | 0.5 | 3193 | 137 | 0.5 | 4598 | 198 | 0.5 | 7185 | 309 | 0.5 | 12774 | 549 | 0.5 | 19959 | 858 | 0.5 | 79835 | 3433 |
0.6 | 2453 | 105 | 0.6 | 3832 | 165 | 0.6 | 5518 | 237 | 0.6 | 8622 | 371 | 0.6 | 15328 | 659 | 0.6 | 23950 | 1030 | 0.6 | 95802 | 4120 |
0.7 | 2861 | 123 | 0.7 | 4471 | 192 | 0.7 | 6438 | 277 | 0.7 | 10059 | 433 | 0.7 | 17883 | 769 | 0.7 | 27942 | 1207 | 0.7 | 111768 | 4806 |
Пример
Задача: подобрать диаметр трубы для отопления гостиной площадью 18 м², высота потолка 2,7 м.
Данные проекта:
- двухтрубная схема разводки;
- циркуляция — принудительная (насос).
Среднестатистические данные:
- расход мощности – 1 кВт на 30 м³
- запас тепловой мощности – 20%
Расчёт:
- объём помещения: 18 * 2,7 = 48,6 м³
- расход мощности: 48,6 / 30 = 1,62 кВт
- запас на случай морозов: 1,62 * 20% = 0,324 кВт
- итоговая мощность: 1,62 + 0,324 = 1,944 кВт
Находим в таблице наиболее близкое значения Q:
Шаг 2: вычисление местных сопротивлений
Чтобы определиться с материалом труб, необходимо сравнить показатели их гидравлического сопротивления на всех участках отопительной системы.
Факторы возникновения сопротивления:
Трубы для отопления
- в самой трубе:
- шероховатость;
- место сужения/расширения диаметра;
- поворот;
- протяжённость.
- в соединениях:
- тройник;
- шаровой кран;
- приборы балансировки.
Расчетным участком является труба постоянного диаметра с неизменным расходом воды, соответствующим проектному тепловому балансу помещения.
Для определения потерь берутся данные с учётом сопротивления в регулирующей арматуре:
- длина трубы на расчётном участке/l,м;
- диаметр трубы расчётного участка/d,мм;
- принятая скорость теплоносителя/u, м/с;
- данные регулирующей арматуры от производителя;
- справочные данные:
- коэффициент трения/λ;
- потери на трение/∆Рl, Па;
- расчетная плотность жидкости/ρ = 971,8 кг/м3;
- технические характеристики изделия:
- эквивалентная шероховатость трубы/kэ мм;
- толщина стенки трубы/dн×δ, мм.
Для материалов со сходными значениями kэ производители предоставляют значение удельных потерь давления R, Па/м по всему сортаменту труб.
Чтобы самостоятельно определить удельные потери на трение/R, Па/м, достаточно знать наружный d трубы, толщину стенки/dн×δ, мм и скорость подачи воды/W, м/с (или расход воды/G, кг/ч).
Для поиска гидросопротивления/ΔP в одном участке сети подставляем данные в формулу Дарси-Вейсбаха:
Для стальных и полимерных труб (из полипропилена, полиэтилена, стекловолокна и т.д.
) коэффициент трения/ λ наиболее точно вычисляется по формуле Альтшуля:
Re — число Рейнольдса, находится по упрощённой формуле (Re=v*d/ν) или с помощью онлайн-калькулятора:
Шаг 3: гидравлическая увязка
Для балансировки перепадов давления понадобится запорная и регулирующая арматура.
Исходные данные:
- проектная нагрузка (массовый расход теплоносителя — воды или низкозамерзающей жидкости для систем отопления);
- данные производителей труб по удельному динамическому сопротивлению/А, Па/(кг/ч)²;
- технические характеристики арматуры.
- количество местных сопротивлений на участке.
Задача: выровнять гидравлические потери в сети.
В гидравлическом расчёте для каждого клапана задаются установочные характеристики (крепление, перепад давления, пропускная способность). По характеристикам сопротивления определяют коэффициенты затекания в каждый стояк и далее — в каждый прибор.
Фрагмент заводских характеристик поворотного затвора
Выберем для вычислений метод характеристик сопротивления S,Па/(кг/ч)².
Потери давления/∆P, Па прямо пропорциональны квадрату расхода воды по участку/G, кг/ч:
В физическом смысле S — это потери давления на 1 кг/ч теплоносителя:
где:
- ξпр — приведенный коэффициент для местных сопротивлений участка;
- А — динамическое удельное давление, Па/(кг/ч)².
Удельным считается динамическое давление, возникающее при массовом расходе 1 кг/ч теплоносителя в трубе заданного диаметра (информация предоставляется производителем).
Σξ — слагаемое коэффициентов по местным сопротивлениям в участке.
Приведенный коэффициент:
Он суммирует все местные сопротивления:
С величиной:
которая соответствует коэффициенту местного сопротивления с учётом потерь от гидравлического трения.
Шаг 4: определение потерь
Гидравлическое сопротивление в главном циркуляционном кольце представлено суммой потерь его элементов:
- первичного контура/ΔPIк ;
- местных систем/ΔPм;
- теплогенератора/ΔPтг;
- теплообменника/ΔPто.
Сумма величин даёт нам гидравлическое сопротивление системы/ΔPсо:
Обзор программ
Для удобства расчётов применяются любительские и профессиональные программы вычисления гидравлики.
Самой популярной является Excel.
Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.
Главная трудность в работе с такими программами — незнание основ гидравлики. В некоторых из них отсутствуют расшифровки формул, не рассматриваются особенности разветвления трубопроводов и вычисления сопротивлений в сложных цепях.
Особенности программ:
- HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
- DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
- «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.
Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.
Как работать в EXCEL
Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.
Ввод исходных данных
Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.
D4 | 45,000 | Расход воды G в т/час |
D5 | 95,0 | Температура на входе tвх в °C |
D6 | 70,0 | Температура на выходе tвых в °C |
D7 | 100,0 | Внутренний диаметр d, мм |
D8 | 100,000 | Длина, L в м |
D9 | 1,000 | Эквивалентная шероховатость труб ∆ в мм |
D10 | 1,89 | Сумма коэф. местных сопротивлений – Σ(ξ) |
Пояснения:
- значение в D9 берётся из справочника;
- значение в D10 характеризует сопротивления в местах сварных швов.
Формулы и алгоритмы
Выбираем ячейки и вводим алгоритм, а также формулы теоретической гидравлики.
D12 | !ERROR! D5 does not contain a number or expression | tср=(tвх+tвых)/2 | 82,5 | Средняя температура воды tср в °C |
D13 | !ERROR! D12 does not contain a number or expression | n=0,0178/(1+0,0337*tср+0,000221*tср2) | 0,003368 | Кинематический коэф. вязкости воды – n, cм2/с при tср |
D14 | !ERROR! D12 does not contain a number or expression | ρ=(-0,003*tср2-0,1511*tср+1003, 1)/1000 | 0,970 | Средняя плотность воды ρ,т/м3 при tср |
D15 | !ERROR! D4 does not contain a number or expression | G’=G*1000/(ρ*60) | 773,024 | Расход воды G’, л/мин |
D16 | !ERROR! D4 does not contain a number or expression | v=4*G:(ρ*π*(d:1000)2*3600) | 1,640 | Скорость воды v, м/с |
D17 | !ERROR! D16 does not contain a number or expression | Re=v*d*10/n | 487001,4 | Число Рейнольдса Re |
D18 | !ERROR! Cell D17 does not exist | λ=64/Re при Re≤2320 λ=0,0000147*Re при 2320≤Re≤4000 λ=0,11*(68/Re+∆/d)0,25 при Re≥4000 | 0,035 | Коэффициент гидравлического трения λ |
D19 | !ERROR! Cell D18 does not exist | R=λ*v2*ρ*100/(2*9,81*d) | 0,004645 | Удельные потери давления на трение R, кг/(см2*м) |
D20 | !ERROR! Cell D19 does not exist | dPтр=R*L | 0,464485 | Потери давления на трение dPтр, кг/см2 |
D21 | !ERROR! Cell D20 does not exist | dPтр=dPтр*9,81*10000 | 45565,9 | и Па соответственно D20 |
D22 | !ERROR! D10 does not contain a number or expression | dPмс=Σ(ξ)*v2*ρ/(2*9,81*10) | 0,025150 | Потери давления в местных сопротивлениях dPмс в кг/см2 |
D23 | !ERROR! Cell D22 does not exist | dPтр=dPмс*9,81*10000 | 2467,2 | и Па соответственно D22 |
D24 | !ERROR! Cell D20 does not exist | dP=dPтр+dPмс | 0,489634 | Расчетные потери давления dP, кг/см2 |
D25 | !ERROR! Cell D24 does not exist | dP=dP*9,81*10000 | 48033,1 | и Па соответственно D24 |
D26 | !ERROR! Cell D25 does not exist | S=dP/G2 | 23,720 | Характеристика сопротивления S, Па/(т/ч)2 |
Пояснения:
- значение D15 пересчитывается в литрах, так легче воспринимать величину расхода;
- ячейка D16 — добавляем форматирование по условию: «Если v не попадает в диапазон 0,25…1,5 м/с, то фон ячейки красный/шрифт белый».
Для трубопроводов с перепадом высот входа и выхода к результатам добавляется статическое давление: 1 кг/см2 на 10 м.
Оформление результатов
Авторское цветовое решение несёт функциональную нагрузку:
- Светло-бирюзовые ячейки содержат исходные данные – их можно менять.
- Бледно-зелёные ячейка — вводимые константы или данные, мало подверженные изменениям.
- Жёлтые ячейки — вспомогательные предварительные расчёты.
- Светло-жёлтые ячейки — результаты расчётов.
- Шрифты:
- синий — исходные данные;
- чёрный — промежуточные/неглавные результаты;
- красный — главные и окончательные результаты гидравлического расчёта.
Результаты в таблице Эксель
Пример от Александра Воробьёва
Пример несложного гидравлического расчёта в программе Excel для горизонтального участка трубопровода.
Исходные данные:
- длина трубы100 метров;
- ø108 мм;
- толщина стенки 4 мм.
Таблица результатов расчёта местных сопротивлений
Усложняя шаг за шагом расчёты в программе Excel, вы лучше осваиваете теорию и частично экономите на проектных работах. Благодаря грамотному подходу, ваша система отопления станет оптимальной по затратам и теплоотдаче.
Гидравлический расчет системы отопления: примеры, программы
Для эффективной работы системы отопления необходимо выполнить несколько условий – правильно подобрать комплектующие и сделать расчет. От корректного вычисления параметров системы зависит ее КПД и равномерное распределение тепла. Как сделать гидравлический расчет системы отопления – примеры, программы помогут выполнить эти вычисления.
Назначение гидравлического расчета отопления
Пример схемы отопления с учетом расчетных данных
При работе любой системы теплоснабжения неизбежно возникает гидравлическое сопротивление при движении теплоносителя. Для учета этого параметра необходим гидравлический расчет двухтрубной системы отопления. Его суть заключается в правильном выборе компонентов системы с учетом их эксплуатационных качеств.
Фактически гидравлический расчет систем водяного отопления представляет собой сложную процедуру, во время выполнения которой учитываются все тонкости и нюансы.
Важно
На первом этапе следует определиться с требуемой мощностью отопления, выбрать оптимальную схему разводки трубопроводов, а также тепловой режим работы.
На основе этих данных делается гидравлический расчет системы отопления в Excel или специализированной программе. Итогом вычислений должны стать следующие параметры водяного теплоснабжения:
- Оптимальный диаметр трубопровода. Исходя из этого можно узнать их пропускную способность, тепловые потери. С учетом выбора материала изготовления будет известно сопротивление воды о внутреннюю поверхность магистрали;
- Потери давления и напора на определенных участках системы. Пример гидравлического расчета системы отопления позволит заранее продумать механизмы для их компенсации;
- Расход воды;
- Требуемую мощность насосного оборудования. Актуально для закрытых систем с принудительной циркуляцией.
На первый взгляд гидравлическое сопротивление системы отопления сложно. Однако достаточно немного вникнуть в суть вычислений и потом можно будет их сделать самостоятельно.
Порядок расчета гидравлических параметров отопления
На первом этапе вычисления параметров системы отопления следует составить предварительную схему, на которой указывается расположение всех компонентов. Таким образом определяется общая протяженность магистралей, рассчитывается количество радиаторов, объем воды, а также характеристики отопительных приборов.
Как сделать гидравлический расчет отопления, не имея опыта подобных вычислений? Следует помнить, что для автономного теплоснабжения важно правильно подобрать диаметр труб. Именно с выполнения этого этапа и следует начать вычисления.
Определение оптимального диаметра труб
Самый упрощенный гидравлический расчет системы отопления включает в себя только вычисление сечения трубопроводов. Нередко при проектировании небольших систем обходятся и без него. Для этого берут следующие параметры диаметров труб в зависимости от типа теплоснабжения:
- Открытая схема с гравитационной циркуляцией. Трубы диаметром от 30 до 40 мм. Такое большего сечение необходимо для уменьшения потерь при трении воды о внутреннюю поверхность магистралей;
- Закрытая система с принудительной циркуляцией. Сечение трубопроводов варьируется от 8 до 24 мм. Чем оно меньше, тем больше давление будет в системе и соответственно – уменьшится общий объем теплоносителя. Но при этом возрастут гидравлические потери.
Если в наличии есть специализированная программа для гидравлического расчета системы отопления – достаточно заполнить данные о технических характеристиках котла и перенести отопительную схему. Программный комплект определит оптимальный диаметр труб.
Таблица выбора внутреннего диаметра трубопроводов
Полученные данные можно проверить самостоятельно. Порядок выполнения гидравлического расчета двухтрубной системы отопления вручную при вычислении диаметра трубопроводов заключается в вычислении следующих параметров:
- V – скорость движения воды. Она должна быть в пределах от 0,3- до 0,6 м/с. Определятся производительностью насосного оборудования;
- Q – тепловой поток. Это отношение количества тепла, проходящего за определенный промежуток времени – 1 секунду;
- G – расход воды. Измеряется в кг/час. Напрямую зависит от диаметра трубопровода.
В дальнейшем для выполнения гидравлического расчета систем водяного отопления понадобиться узнать общий объем отапливаемого помещения – м³. Предположим, что это значение для одной комнаты равно 50 м³. Зная мощность котла отопления (24 кВт) вычисляем итоговый тепловой поток:
Q=50/24=2,083 кВт
таблица расхода воды в зависимости от диаметра трубы
Затем для выбора оптимального диаметра труб нужно воспользоваться данными таблицы, составленными при выполнении гидравлического расчета системы отопления в Excel.
В этом случае оптимальный внутренний диаметр трубы на конкретном участке системы составит 10 мм.
В дальнейшем для выполнения примера гидравлического расчета системы отопления можно узнать ориентировочный расход воды, который засвистит от диаметра трубы.
Учет местных сопротивлений в магистрали
Пример гидравлического расчета отопления
Не менее важным этапом является расчет гидравлического сопротивления отопительной системы на каждом участке магистрали. Для этого вся схема теплоснабжения условно разделяется на несколько зон. Лучше всего сделать вычисления для каждой комнаты в доме.
В качестве исходных данных для внесения в программу для гидравлического расчета системы отопления понадобятся следующие величины:
- Протяженность трубы на участке, м.п;
- Диаметр магистрали. Порядок вычислений описан выше;
- Требуемая скорость теплоносителя. Также зависит от диаметра трубы и мощности циркуляционного насоса;
- Справочные данные, характерные для каждого типа материала изготовления – коэффициент трения (λ), потери на трении (ΔР);
- Плотность воды при температуре +80°С составит 971,8 кг/м³.
Зная эти данные можно сделать упрощенный гидравлический расчет отопительной системы. Результат подобных вычислений можно увидеть в таблице.
При проведении этой работы нужно помнить, что чем меньше выбранный участок отопления, тем точнее будут данные общих параметров системы.
Так как сделать гидравлический расчет теплоснабжения с первого раза будет затруднительно – рекомендуется провести ряд вычислений для определенного промежутка трубопровода.
Желательно, чтобы в нем было как можно меньше дополнительных приборов – радиаторов, запорной арматуры и т.д.
Обзор программ для гидравлических вычислений
Пример программы для расчета отопления
По сути любой гидравлический расчет систем водяного теплоснабжения является сложной инженерной задачей. Для ее решения были разработаны ряд программных комплексов, которые упрощают выполнение этой процедуры.
Можно попытаться сделать гидравлический расчет системы отопления в оболочке Excel, воспользовавшись уже готовыми формулами. Но при этом возможно возникновение следующих проблем:
- Большая погрешность. В большинстве случаев в качестве примера гидравлического расчета отопительной системы берутся однотрубная или двухтрубная схемы. Найти подобные вычисления для коллекторной проблематично;
- Для правильного учета гидравлического сопротивления трубопровода необходимы справочные данные, которые отсутствуют в форме. Их нужно искать и вводить дополнительно.
Учитывая эти факторы, специалисты рекомендуют использовать программы для расчета. Большинство из них платные, но некоторые имеют демоверсию с ограниченными возможностями.
Oventrop CO
Программа для гидравлического расчета
Самая простая и понятная программа для гидравлического расчета системы теплоснабжения.
Интуитивный интерфейс и гибкая настройка помогут быстро разобраться с нюансами ввода данных. Небольшие проблемы могут возникнуть при первичной настройке комплекса.
Необходимо будет ввести все параметры системы, начиная от материала изготовления труб и заканчивая расположением нагревательных элементов.
HERZ C.O
Характеризуется гибкостью настроек, возможностью делать упрощенный гидравлический расчет отопления как для новой системы теплоснабжения, так и для модернизации старой. Отличается от аналогов удобным графическим интерфейсом.
Instal-Therm HCR
Программный комплекс рассчитан для профессионального гидравлического сопротивления системы теплоснабжения. Бесплатная версия имеет множество ограничений. Область применения – проектирование отопления в больших общественных и производственных зданиях.
Пример гидравлического расчета системы отопления: